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ABSTRACT 

The first i n  s i t u  measurements of ion composition i n  the nighttime 

equatorial E and F region ionospheres <.3;-300 iun) are presented ana 

discussed. 

spectrometers launched from Thumbs, India on March 9-10, 1970 at solar  

zenith angles of 112' and 165'. 

composition w a s  measured a t  times bounding a period of F region dmnwzrd 

drift. 

three orders of magnitude between 220 and 300 km. 

(200 km), 0' ceased t o  be the major ionic ton&t.ituent 

t ions  of 0' and I'?+ remained larger than predicted from known radiation 

sources and loss processes. 

retained nearly the same shape and magnitude throughout the  night i n  agres- 

ment with theories  assuming scat tered W radiation t o  be the maintaining 

source. 

observed t o  a l t i tudes  approaching 300 km, while the heavier ions Ca' and 

K+ were seen i n  reduced quantity t o  200 km. 

exhibited changes which can be ascribed t o  ve r t i ca l  drift ing.  

These prof i les  were obtained by two rocket-borne ion mass 

Ionosonde data established tha t  the 

During this  period the ions O+ and & were enhanced by one t o  

Below the d r i f t  region 

but the concentra- 

Here also,  both the  02' and NO+ prof i les  

Light metallic ions including &+, Na+ and possibly Si+ were 

A l l  metal ion p ro f i l e s  



INTRODUCTION 

A t  the uagnetic eqvator the F region exhlbits a ver t ica l  d r i f t  

which i s  correlated w i t h  E region dynmo e l e c k i c  f ie lds .  Rocket studies 

of electron density ( E k i n  and Blumle, 1968) and inc,Jherent backscatter 

soundings (Farley, 1966; Balsley, 1973) ?sve demnstrated tha t  at night 

the equatorial F regior. moves downward enhancing lower F regjon icnospheric 

concontratiom t o  galues Larger than those predicted on t h e  basis 3f 

maintenance by scattered solar ult raviolet  radiations. 

description of the behavior of the nighttime equatorial ionosphere has 

not been possible because information on tenporal changes of night-Sme 

ion composition a t  lower al t i tudes has not previously been available. 

A detailed 

1r. this paper we report  the first measurements of nighttime equatorial 

posit ive ion composition from 90 t o  300 km Altitude. These prof i les  were 

obtained during the night s f  March 3-10, 1373 with ion mass spectromezers 

launched from the Indian Thumba Equatorial Rocket Taunch Si te  (TERLS), 

located at  8 . 5 3 O N  la t i tude,  76.95% longitude, and -1.70 magnetic dip 

(cslculatad from Stassinopoulos and Mead, 1972). The f i r s t  launching, 

rocket 18.97, occurred at a solar zenith angle of 1120 (1938 LMT) and the 

rocket reached an apogee of 298 km. 

i t s  maximum height, which was  i n  excess of 500 h. 

launched at x = 1 6 5 O  (0108 LMT) aqd reached 295 km, subsequent t o  the 

downward d r i f t  of the F region pe& t o  an a l t i tude  of approximately 300 km. 

A t  t h i s  t i m e ,  the  F2 peak w a s  near 

Rocket 18.98 w a s  

Wancport of the F region during t h i s  period was determined from analysis 

of ionagrams taken at frequent intervals.  

A t h i rd  rocket (18.99) launched 35 minutes after 18.98, carried 

instrmentat ion t o  measure ul t raviolet  radiations important for the 
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maintenance of the nighttime ionosphere. The de ta i l s  and resu l t s  ~f 

these experiments are discussed by I?a.resce e t  31. (1373a, 1973b) and 

used i n  the interpretation of the ion composition data. 

INSTRUMEXTATION AND ANALYSIS 

Characteristics of the  f l i g h t s  of 18.97 and 18.98 are listed i n  a k i n  

and Goldberg (1973). 

telemetry interferometer tracking system (Hudgins and Lease, 1967). 

Magnetometers were used t o  provide payload axis-magnetic f i e l d  angles of 

88' (18.97) and 570 (18.98). Payload aspects f o r  both f l i gh t s  were then 

determined by assuming the  payload axis t o  l i e  i n  the t ra jec tory  plane. 

Trajectories were determined using a tone range/ 

Each payload underwent nose cone ejection and separation from the  

rocket motor pr ior  t o  ion composition sampling. 

measured using pumped, quadrupole ion mass spectrometers of the type 

discussed i n  Goldberg and Aikin (1971). The character is t ics  of each 

spectrometer are  tabukited i n  Table I. In addition t o  ion sampling, t o t a l  

electron density was measured on each f l i gh t  by means of the continuous 

wave dispersive Doppler techntque (Seddon, 1953; Bauer and Jackson, 1362) 

operating at transmitting frequencies of 73.60 and 24.53 MHz. 

longitudinal propagation conditions were preserved at, the  magnetic equator 

by launching i n  a southward direction. 

The ion composition was 

Quasi- 

Sample mass spectra and the method of data analysis for these rocket8 

are given i n  Aikin and Goldberg (1973). 

for each mas6 spectrum WBS normalized to  t h e  t o t a l  electron density a t  the 

mean height for  the spectrum using the  electron density prof i le  obtained 

by the propagation experiment. 

applied from free nolecular flow theory as discussed i n  Goldberg and 

The t o t a l  Ion spectrometer current 

TorrectIons f o r  re la t ive  mass effects  Were 
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Blumle (1970). 

were deduced from the U.S. Standard Atmosphere, 1966 Supplement. 

The temperature prcf'iles used t o  make these corrections 

Above 290 km and only on the f l igh t  of 18.98, a significant backgromd 

current was superimposed on the spectra. 

magnitude by apogee, masking the minor constituents i n  the upper domains 

of the f l ight .  

i n  t h e  2 t o  15 Kev enargy range, with fluxes similar t o  those deduced by 

Heikkila (1971) at  higher altitudes. The detailed nature of t h i s  back- 

ground source i s  discussed elsewhere (Goldberg, 1973); it suffices here 

to  s ta te  tha t  the background currents were subtracted from the icn s w c t r a l  

currents t o  arrive at  values used for  cormalization. 

D r i f t  data were obtained fron iohogram studies. 

It increased three orders of 

This background can be caused by sof t  energetic electrons 

The ionogrsc. t rue 

height analysis w a s  optimized by matching t h e  low end of the ionogrerr, trace 

t o  the CW Doppler profile from 18.98. 

slope was  then assumed i n  the analysis of the iomgrams. Direct comparison 

of t h e  electron density profiles obtained by the two independent techniques 

showed good agreenent . 

This f i t  and resulting low density 

It should be noted tha t  the night of March 9-10, 1970 occurred after 

the great magn%tlc storm of March 8. 

index fluctuated between 4 and 6 indicating a period of moderate activity.  

Chandra and Rastogi (1972) have shown a11 inverse correlation between range 

blanketing spread F and Kp index a t  the magnetic equator under nighttime 

conditions. Hence, the moderate magnetic act ivi ty  of March 9-10? 1970 is 

cmslstent with the p m t i a l  obscuration of the F region ionogram traces 

observed, and permitted t rue height analysis from the lonogram for that  

night. 

On the night of March 9-10, the Kp 
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RESULTS AND DISCllSSIOIV 

The curves labelled li i n  Ngur~s 1 and 2 were abtained from the 

Other CW propagation electron density experiment aboard each rocket. 

profiles i l lus t ra te  and compare the t i m e  behavior of the non-metallic and 

metallic ions, respectively. Minor Isotopic ions and contamlnents, e.g., 

H$+, were observed but are not shown i n  the figures. 

feature seen is the effect  of downward transport of atomic io= and 

electrons, which can be interpreted i n  terms of the velocity-time plot 

shown i n  figure 3. 

The mst noticeable 

The upper portion of Figure 3 i l l u s t r a t e s  the alt i tude variations a t  

two constant densities, one near the minimum (Ae = 5 x 10 4 and one 

near ihe maXirmrm (Ne E 4 x LO5 cm '3) value for  the F2 leJrer. 

that both partione of the layer moved downward at the same rate implying 

We note 

a preservation of the layer shape during t h i s  motion. 

suggestion that  layer motion approximetee drift motion at the nighttime 

equator, 88 proposed by Bal13ley (1969). The! s l o p  of the curve depicts 

the change of isopleth alt i tude with time and can be used t o  derive the 

vertical velocity prof i le  8bWn below. 

also indicated i n  Figure 3, show8 the first measuremelyt t o  have occurred 

at 8 time when the al t i tude of the F2 peak was near 550 km and undergoing 

an upward drift. The second measurement occurred after the F 2  layer peak 

height had dropped t o  300 km al t i tude and the downward drift  had became 

negligible 

This supports the 

The launch sequenze of the rockets, 

The f i r e t  measurement WLLLI made during a period of upward drift. 

Following t h i r  the F 1-r moved down, IncreMIng the O+ eoncentration at 

300 km by nearly three o r b r a  of magnitude (cf. Mgurs 1). Below 200 km 
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the O+ concentration decreased between the  two measurements, but less 

rapidly than would be expected from the  known nighttime production and 

loss processes. 

There is a mmtmrable concentration of I@ observed although the 

alt i tude distribution differs between the two flights. 

exhibits a nearly a l t i tude independent distribution of about 20 ions/cm3. 

During the f l igh t  of 18.98, N+ assumed a distribution that increased near 

apogee but decreased below 240 km with respect t o  the 18.97 distribution. 

The 18.9 al t i tude variation of 

reduced abundance. 

The e s r l i e r  flight 

paralleled tha t  of O+ but with a 

While d r i f t  effects  control the number and species distribution of 

ions above ZOO km, d r i f t  could not be expected t o  be important below 200 km, 

where the  time constant for  the loss of both O+ and @ is very short and 

the major ions observed are molecular, i.e, Ho+ and 02'. The major ions 

are considered t o  be maintained by scattered s01c.r rsdiation (Ogawa and 

Tohmatsu, 1966; Keneshea e t  al., 1970; and w i t a k a  et  a l . ,  1971) and the  

question as t o  whether scattered ul t raviolet  radiation can also accmnt for 

the observed 0' and I+ rmrst be investigated. 

The eources of scattered radiation, which have been propoeed a8 

ionizing radiations, include man alpha fo r  NO, Lyman beta for  02, and 

the He1 and He11 radiations at 584A and 304A, which can Ionize met 

atmospheric constituents. 

contribute t o  the Ion distribution below 130 km (Aikin and Goldberg, 1973). 

The He1 and He11 radiations, having a peak ionization rate betwen 150 Rnd 

200 km, were measured on 18.99, launched 35 minutes after 18.98. 

of 16t, :or 5 8 4 A  and 8R for 304A were obtained (Psreace et al . ,  1973a. b). 

The Lyman alpha and beta radiations cem only 

Flues 
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These values are larger than the 1OR for  5 8 4 ~  and LR for  304A used i n  

computations of the nighttime ionosphere, e.g., by Fujitaka e t  al., (1971). 

The presence of 0' and N+ below 200 km cannot be explained so le ly  by 

the scattered radiations discussed above, These radiations wadld account 

fo r  at most, 30 0' ions/cm3 at 180 km and a factor of ten less a t  150 km 

for the  zenith angle (x = 165O) of 18.98. For O', e i ther  another source 

of ioidzation and/or a small ra te  coefficient for  the charge exchange 

reaction involvbg 0' and 02' is  required. 

instrumental, i.e., the  partial dissociation of NO+ and Ozt i n  the 13V bias  

f i e l d ,  pr ior  t u  sampling, Mechanism for  

the  production of N+ include direct  photoionization, dissociative ionization 

of N2 and charge exchange between N2' and N (Rishbeth et  al., 1972). 

night the primary source i s  photoionization by scettered solar  EW. 

source i s  d i rec t ly  dependent on the  atomic nitrogen content i n  the lower 

thermosphere. 

and N would require that the  28' observed be identified as N2' rather than 

A th i rd  source might be 

The s i tuat ion i s  similar for  e. 

A t  

This 

Additional production of N+ by charge exchange between N2+ 

si+. 
During both measurements 28' w w  observed i n  quantity. This constituent 

i s  shown on both Figure 1 (non-metallic consti tuents) and Figure 2 (metall ic 

constituents) because of probable and indistinguishable contributions from 

N2' and Si'. 

28' is  ident i f ied as N2+, then it is d i f f i c u l t  t o  explain the nighttime 

maintenance of t h i s  ion. 

involving 0 and 02. 

at  t h e i r  meximum, between 0.1 and 0.5 i0ns/cm3 8ec. %bey provide no 

contribution below 150 km although 28' is observed below this height. 

Typical vslues shown range between 10 and 50 i0ns/cm3. If 

The ion shsuLd. he l o s t  by ion-neutral reactions 

The nighttime scattered helium radiatione accourat for ,  
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Alternate poss ib i l i t i es  include additional sources of ionization or the 

ident i f icat ion of 28' as Si'. 

typical ly  long l ifetime of atomic ions and be subject t o  a drift-controlled 

height structure.  

reference t o  Figure 2 shows tha t  28+ tracks the other metal ion distributions 

such as Mg+. 

If Si', t h i s  constituent would have the 

This las t  a l ternat ive i s  par t icular ly  e t t rac t ive  since 

The enhanced radiation, previously discussed, does not a3pea.r t o  modify 

The observations also the NO+ and 02' densit ies s ignif icant ly  below 180 km. 

indicate that above t h h  a l t i tude  the NO+ and 02' dist r ibut ions become 

increasingly sensit ive t o  the d r i f t  of atomic ions, especially O+. 

ment of 0' between the two f l i gh t s  increases the O2 

an order of  magnitude but there i s  less than a factor  of 2 increase of NO'. 

The slopes of the 02+ and NO' d is t r ibut ions do not coincide fo r  18.97 but 

are essential'ly t3e  sane f o r  18.98. 

Enhance- 

concentration by nearly 
+ 

Above 200 km NO+ i o  produced by the  reaction between 0' and N2 

( r a t e  

is  the only loss process so tha t  under equilibrium Zonditions 

kl). Dissociative recombination of NO+ with electrons (rate E a ~ l )  

For 

der 

the 

+ NO = 

the l a t t e r  step, 

'D1 

it i s  assumed tha t  0' Ne. A scale height can be 

ved which i s  ind cative of the atmospheric temperature a t  the time of 

f l igh t .  The prof i le  of 18.98 rather  than 18.97 is  best  sui ted fo r  such 

analysis since the approxlruation is more accurate for  newly steady state 

conditions. The 18.98 data also show l e s s  scat ter .  The high a l t i tude  slope 
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of the 18.98 NO' p rof i le  yields a scale height of 31.7 km. 

consistent with an exospheric temperature of 12OO0K and a model from the  

U.S. Standard Atmosphere (1966 Supplement) for this temperature can be 

adopted. 

temperature of approximately l lOO" ' x  f o r  the geophysical condik' 

time of the f l igh t .  

This is 

This value can be favorably compared t o  the predicte; exospheric 

, A ' # e  

The production of 02+ abdve 200 km is  controllzd by the r e a c t i m  
+ + 0' + 02 4 02 + 3 (rate 5 k2). 

dissociative recombination, 02' has an additional loss process represented 

by the charge exchange between 02' and NO (rate E k ) which a l so  becomes 

a source of NO' below 200 km. 

Unlike NO , where loss is due solely t o  

3 
One can write wiaer equilibrium conditions 

+ where cy i s  the dissociative recombination coefficient fo r  O2 . 
For !.8.98, x = 1650, 0' T Ne and provided the  second term i n  the 

denominator is  negligible compared t o  the first abme 240 km ([NO] be less 

than LN2], where k3 = 6.3 x lom1' cm3 sec-l ,  Johnsen e t  al., 1970), an 

expression i s  derived which i s  similar t o  tha t  f o r  VO+. 

D2 

The products 

k2 LO2] must have nearly equal values t o  explain the data 

which shows that [NO'] 7 [02+J. 

the maintenance of large values for  Ne at night, and i s  unique t o  the 

equator where ve r t i ca l  d r i f t  e f fec ts  are large, 

This condition is sa t i s f i ed  because of 

Aseumlng tha t  the neutral  atmosphere composition of the 1200°K U.6. 

Standard Atmosphere is correct,  a comparison can thus be made  between the 
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i o n  ra te  coefficients required for the ionosphere and those mectsured i n  

the ? aboratory. A t  120bqK, cyDl = 2 x 10-7 an3  sec" (Bardsley, 1.968) and 

ap~2 = 1 x 10-7 cm3 sec'l (Mehr and Biondi, 1969). 

sependence of kl and k2 have a l so  beeu measured (McFarland e t  a l . ,  1973). 

These authors approximate the r a t e  coefficients by kl = 8x10-14( T/300) 

and k2 = 2X10-11(T/300)-o*4. 

r a t e  coefficients gives an [N2]/[02] r a t i o  which i s  within a factor of two 

of the  atmospheric model used here. 

The temperature 

2 

The a-plication of the  laboratory derived 

The above analysis i s  not applicable for the  f l i gh t  of 18.97, when the 

solerr zenith angle x = 112O. 

and electrons i n  addLtion t o  a t rans i t ion  i n  the  ionizing f l u ,  so tha t  time 

variations must be considered i n  any detai led explanation of t h i s  prof i le .  

A t  tha t  time there was an upward d r i f t  of O+ 

Figure 2 compares the  measured dis t r ibut ion of metal ions 23+, Na+; 

24+, Mg'; 28+, Si' or  N2'; 39+, K'; and 40+, Ca+; for the  two rocket f l igh ts .  

Typical spectra for the l c w  a l t i tude  metallic ion data froa f l i gh t  18.98 can 

be found i n  Aikin ar.d Goldberg (15173)~ 

Since neither spectrometer swept above mss 42, high pass filt9.r li.-LLe 

data were employed t o  deduce information concerning heavier constituents. 

Following a technique outlined i n  Goldberg and Aikib (1971), high pass f i l t e r  

mode data for  two AMU ranges (1 a; 32 -.+ m )  were used t o  deduce the re la t ive  

sens i t iv i ty  i n  this  mode t o  the spectral  mode. 

represents a l l  masses above 31' and i s  shown t o  130 km. 

be l t  between 90 and 100 km % i s  thought t o  be primarily Fe+ (56+),  and above 

t h i s  height i s  02' (32+). This latter conclusion is based on the  reRult tha t  

at hi,Ther a l t i tudes the TB profi le  resem1)les 02' during both f l igh ts .  

The % prof i le  thus obtained 

In  the metall ic 



- 10 - 
Comparison of the concentrated metallic ion peak heights at, 1938 ana 

oic8 LMT i l l u s t r a t e s  t h a t  these lor&-lived 3;tmLc ions exhibit a downward 

d r i f t  during the course of the night. However, the  t o t a l  content remains 

fixed i n  :he presence of t h i s  d r i f t .  A detai led discussion of t h i s  proLler,, 

can be found i n  Aikin and Goldberg (1973). 

Above 200 km on both f l i gh t s ,  t h e  l igh t  metallic ions 23+, 24' and 28' 

are observed i n  concentratiom of lo/&. 

represznted by 39T and bo+, t-e observed i n  much smaller qcant i t ies  a t  

a l t i tudes  above 100 km. 

on 18.98 are not real, but caused by the backgrowC masking e f fec t  

previously discus sed. 

Heavier metallic cons-Lituents, 

The high altitgde limits of the metal ion prof i les  

The presence of l i gh t  metallic ions at high a l t i tudes  (> 200 kn) has 

previously been reported from rocket da.ta a t  m4.dlatitudes (Goldberg and 

Blumle,  1970) and sa te l l i t e  data (Taylor, 1973). These d s t a  would tend t o  

suggest tha t  long l ived  metallic ions are subject t o  ioslospheric transport 

processes, and eventually disperse t o  regions far from t h e i r  point of origin. 

The drift an, electron densicy rneasurcments have also yielded inter-  

estiilg resul ts .  The velocity prof i le  obtained from Thumba by ionogram 

analysis exhibits many of the typ ica l  properties observed at  Jica,ma.rca, Peru 

(Balsley, 1973) using incoherent backscatter techniques. These are 

principally the post-sunset upvard drift followed by a more sustained 

downward d r i f t  v i r tua l ly  ending by midnight. 

Returning t o  Flgvre 1, we note a cer ta in  am>unt of s t ructure  present 

i n  the  Ni prof i le  above 260 km on the  18.98 data but absent on the  18.97 

profile.  

ionograms, whereas 18.98 launch time !onograms showed a weak range spread 

Rocket 18.97 was f i red pr ior  t o  any appearance of sprcad F on the 
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F condition. Fence. the structure observed FW be associated with t h i s  

equatorial phenonenon and/or d r i f t .  

mere are also osci l la t ions i n  Hi present at iower a l t i tudes  during 

both fl ights.  No explanation fo r  t h i s  Qbservati3n ex is t s  at present 

although t3ey may possibly be associated with t iZa l  motions or  with an 

unkmwn nighttime source of ionization near the 140 km level. 

c0r?cm10m 
'Ih ion composition altitcde prof i les ,  representative of the bebavior 

of the n i g h t t h e  equatorial ionosphere, are presented. between 200 and 

300 km the dominant ion i s  O+. 

of 2 x lo3 cm-3 for  a zenith angl? of 1's. 

w a r d  &if% durirg the course of the night result ing i n  an increase i n  the 

concentration of 0' by as much as a factor  of lo3 near 3@0 km. 

concentration is  correspondingly enhanced by 0' charge exchange processes. 

The ion IJO+ exhibits l i t t l e  enhancement, consistent with theory. The ic\ i1  

N+ exhibits some increese above X O  kn, also caused by the d0-d drift. 

Below 200 b, N e ,  [02+] and [NO'] remain nearly unchanged between 

This ion exhibits a nearl;. constant density 

The F region exhibi',s a down- 

The 02+ 

f l igh ts .  

t o  be accounted for by currently accepted loss rates; other sources cf 

nighttime ionization are required. 

N2+, is s b i l a r l y  overabundant below 200 hm, but can be accounted fo r  if 

ident i f ied as Si'. 

Since the 0' and N+ densities i n  this region deplete too slowly 

The constitl-.;& 28+, if  ident i f ied 88 

Light metal ions (Na', Mg+, axid possibly Si') are observed t o  a l t i tudes  

Heavier metall ics,  such 98 Ccr' and K' are observed t o  200 km but of 300 km. 

i n  reduced quantity. The metall ic ions are apparently influenced by iono- 

spheric transport processes, which at the equator resu l t  primarily In 

ver t i ca l  d r i f t .  
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Spectrcmeter characteristics for the instruments aboard payloads 

18.97 and 18.98. 
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Figure 1. Observed d is t r ibu t ion  of positive, non-metallic ion species i n  

the nighttime E and F regions over Thumba: 

rocket f l igh t  18.97 at  1938 W, x = 1 1 2 O ;  ( r igh t )  uplee of 

rocket f l i gh t  18.98 at  0108 LMT, x = 165'. 

Observed distribution of positive metallic ion species i n  the 

nighttime E and F regions over "humba: 

( r igh t )  18.98. 

(cpper) F-region electron density isopleths as a function of 

time for the night of March 9-10, 1970. (lower) Vertical 

d r i f t  velocity as a function of time. 

( l e f t )  upleg of 

Figure 2. 

( l e f t )  18.97; 

Figure 3. 
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